Approximation of Solutions of Equations of Hammerstein Type in Hilbert Spaces
نویسندگان
چکیده
Let H be a real Hilbert space. Let K, F : H → H be bounded, continuous and monotone mappings. Suppose that u∗ ∈ H is a solution to Hammerstein equation u + KFu = 0. We introduce a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the Hammerstein equation.
منابع مشابه
Stochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملSome extensions of Darbo's theorem and solutions of integral equations of Hammerstein type
In this brief note, using the technique of measures of noncompactness, we give some extensions of Darbo fixed point theorem. Also we prove an existence result for a quadratic integral equation of Hammerstein type on an unbounded interval in two variables which includes several classes of nonlinear integral equations of Hammerstein type. Furthermore, an example is presented to show the effic...
متن کاملApproximation of solutions of generalized equations of Hammerstein type
Let H be a real Hilbert space. For each i = 1, 2, ...m, let Fi, Ki : H → H be bounded and monotone mappings. Assume that the generalized Hammerstein equation u + ∑m i=1 KiFiu = 0 has a solution in H. We construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein equation. Our iterative scheme in this paper seems far simpl...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کامل